Tie Breaking in Clause Weighting Local Search for SAT
نویسندگان
چکیده
Clause weighting local search methods are widely used for satisfiability testing. A feature of particular importance for such methods is the scheme used to maintain the clause weight distribution relevant to different areas of the search landscape. Existing methods periodically adjust clause weights either multiplicatively or additively. Tie breaking strategies are used whenever a method’s evaluation function encounters more than one optimal candidate flip, with the dominant approach being to break such ties randomly. Although this is acceptable for multiplicative methods as they rarely encounter such situations, additive methods encounter significantly more tie breaking scenarios in their landscapes, and therefore a more refined tie breaking strategy is of much greater relevance. This paper proposes a new way of handling the tie breaking situations frequently encountered in the landscapes of additive constraint weighting local search methods. We demonstrate through an empirical study that when this idea is used to modify the purely random tie breaking strategy of a state-of-the-art solver, the modified method significantly outperforms the existing one on a range of benchmarks, especially when we consider the encodings of large and structured problems. Content Areas: Search, Constraint Satisfaction
منابع مشابه
Estimating Problem Metrics for SAT Clause Weighting Local Search
Considerable progress has recently been made in using clause weighting algorithms to solve SAT benchmark problems. While these algorithms have outperformed earlier stochastic techniques on many larger problems, this improvement has generally required extra, problem specific, parameters which have to be fine tuned to problem domains to obtain optimal run-time performance. In a previous paper, th...
متن کاملUsing Cost Distributions to Guide Weight Decay in Local Search for SAT
Although clause weighting local search algorithms have produced some of the best results on a range of challenging satisfiability (SAT) benchmarks, this performance is dependent on the careful handtuning of sensitive parameters. When such hand-tuning is not possible, clause weighting algorithms are generally outperformed by self-tuning WalkSAT-based algorithms such as AdaptNovelty and AdaptGWSA...
متن کاملSwitching among Non-Weighting, Clause Weighting, and Variable Weighting in Local Search for SAT
One way to design a local search algorithm that is effective on many types of instances is allowing this algorithm to switch among heuristics. In this paper, we refer to the way in which non-weighting algorithm adaptGWSAT+ selects a variable to flip, as heuristic adaptGWSAT+, the way in which clause weighting algorithm RSAPS selects a variable to flip, as heuristic RSAPS, and the way in which v...
متن کاملOff the Trail: Re-examining the CDCL Algorithm
Most state of the art SAT solvers for industrial problems are based on the Conflict Driven Clause Learning (CDCL) paradigm. Although this paradigm evolved from the systematic DPLL search algorithm, modern techniques of far backtracking and restarts make CDCL solvers non-systematic. CDCL solvers do not systematically examine all possible truth assignments as does DPLL. Local search solvers are a...
متن کاملNeighbourhood Clause Weight Redistribution in Local Search for SAT
In recent years, dynamic local search (DLS) clause weighting algorithms have emerged as the local search state-of-the-art for solving propositional satisfiability problems. This paper introduces a new approach to clause weighting, known as Divide and Distribute Fixed Weights (DDFW), that transfers weights from neighbouring satisfied clauses to unsatisfied clauses in order to break out from loca...
متن کامل